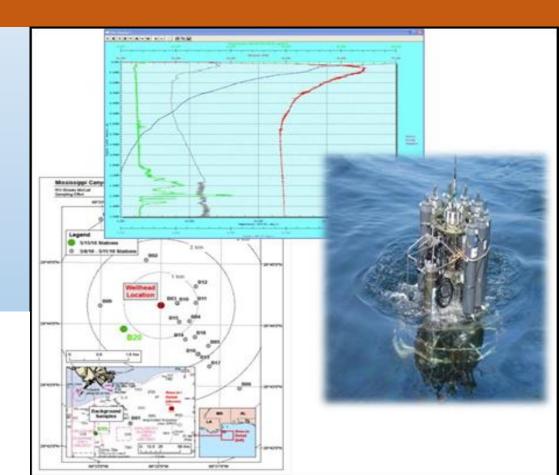
Guidance on SSDI Monitoring: Informing Response Operations

Clean Gulf Conference – 2016 Subsea Dispersant Monitoring Session


Tampa, Florida

November 2016

Gina M. Coelho & James C. Staves

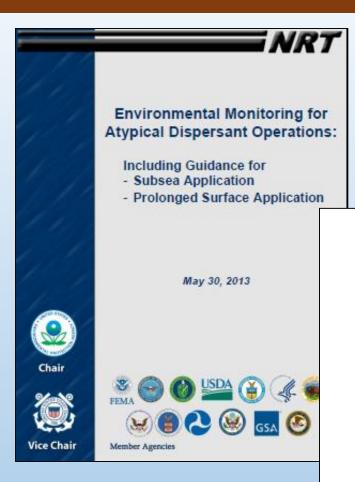
Sponson group www.sponson.net

Monitoring Overview

Logistics and Planning Issues

Plan Approval

Contract Vessels



Organize Crew

Obtain Equipment

Guidance for Subsea Dispersant Monitoring

We must recognize the distinction between monitoring efforts specifically designed to support operational decision-making, versus that which supports natural resource assessments.

Both of these documents provide:

Industry Recommended Subsea Dispersant Monitoring Plan

Version 1.0

API TECHNICAL REPORT 1152 SEPTEMBER 2013

MERBOAN PETROLEUM INSTITUTE

- guidance to develop operational, incidentspecific monitoring plans
- comparable methods and equipment for determining dispersant efficacy and characterizing subsea dispersed oil plumes
- recommended
 procedures for ensuring
 data quality and
 communicating
 monitoring results with
 internal and external
 stakeholders

Operational Monitoring Considerations

FACTORS	EXAMPLES
----------------	-----------------

- 1. Conducted in a <u>safe</u> manner without impeding Source Control activities
- ➤ R/V activities must integrate into SIMOPS; and cannot interfere with ROV cables/tethers

2. <u>Feasible</u> data or sample collection

➤ Down-hole sample of oil may be unobtainable (if so, use a surrogate)

3. Operationally <u>realistic</u>

6.

- Limited instrumentation capacity in a vertically deployed array
- 4. <u>Technologically current</u> instrumentation that is appropriate for seaboard conditions
- ➤ Optical DO probe vs Winkler titration

- Collect data and/or samples that can be processed and interpreted to provide near real-time information to determine if dispersant is working as expected
- ➤ Surface slick visual surveillance, droplet particle size and DO data are available immediately (operational); water, tissue and sediment samples specified in NRT document take longer (NRDA)
- Flexible approach that can be adapted to changing weather, ocean conditions, and spill characteristics
- ➤If monitoring needs to be temporarily suspended, dispersant ops should continue

SSDI Operational Monitoring Objectives

- Monitor VOC concentrations at Source Control in order to maintain a safe working environment
- 2. Confirm dispersant effectiveness
- 3. Characterize dispersed oil concentrations and dissolved oxygen concentrations at depths in the water column
- Obtain detailed chemical characterization of water samples

"Is the subsea dispersant injection operation working?" and "If so, to what extent"

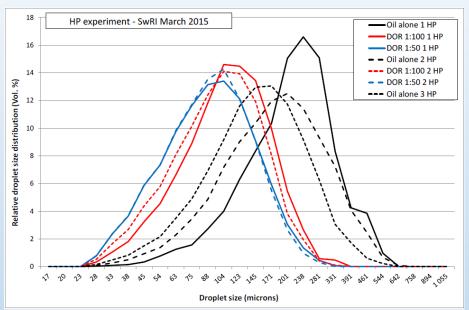
Obj. 1

VOC and LEL Data

- Primary emphasis of surface air VOC and LEL monitoring should be on worker health and safety concerns associated with Source Control and other direct response activities at the wellhead
- This data should be collected by first vessels arriving on scene (before research vessels deploy)
- Industrial hygienist who understands protection levels and OSHA requirements

The device was provided by: Josh Etzkorn (CTEH) Photos property of EM&A, Inc.

Obj. 2 Confirm Dispersant Effectiveness


- Laboratory and mesocosm studies performed in past
 5 years have confirmed that SSDI is effective under high pressure
- During a spill, effectiveness is determined:

Qualitatively

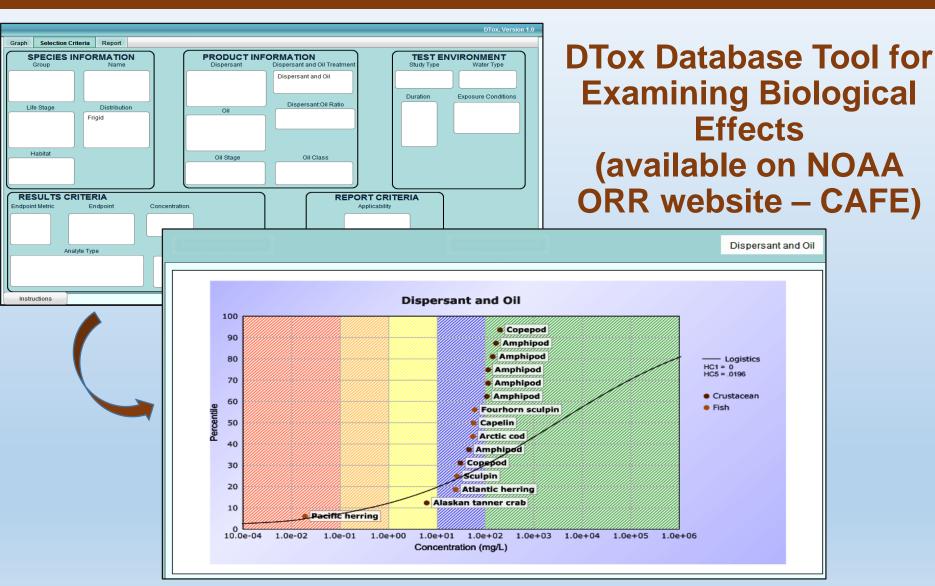
 visual reduction in surface slick and visual change in subsea plume

Quantitatively

- VOC reduction
- Confirm a shift to smaller droplet sizes

API funded studies: Top (SINTEF/SWRI); Bottom (Univ. of Hawaii)

Obj. 3 Rapid Characterization of Hydrocarbon & Dissolved Oxygen Concentrations


- Fluorometer and dissolved oxygen (DO) probes can provide "real-time" information. This information serves two purposes:
 - Increased HC concentrations in the water plume and a small reduction in DO is an indication that SSDI is working
 - This data stream can be used to validate the original NEBA/SIMA justification for SSDI use at the spill.

⊕		
Plume Rating	Fluorescence signal (mg/m^3)	
No plume	Background	
Weak	+ 5 mg/m ³ above background	
Moderate	+5 to +15 mg/m^3 above background	
Strong	>15 mg/m^3 above background	

^{*} Spill Impact Mitigation Analysis or "SIMA" is the environmental tradeoff analysis for response options.

Obj. 4

Detailed Characterization of Hydrocarbon Concentrations

Bejarano A. C., J. Clark, and G. Coelho. 2014. Issues and challenges with oil toxicity data and implications for their use in decision making: A quantitative review. Environmental Toxicology and Chemistry 33:732-742.

Interpreting the Data

Exceedance of any set action levels should not necessarily trigger a subsea dispersant shut-down

 May not indicate that the rationale used to employ subsea dispersant use has changed

and

 Should trigger a SIMA re-assessment of subsea dispersant use by a team of experts

Other Monitoring Considerations

- ➤ The guidance documents provide a flexible framework
- ➤ They are not a replacement for a detailed shipboard data collection plan
- Science team needs to understand dispersant and dispersed oil science in order to meaningfully interpret that data to inform ongoing subsea dispersant ops and SIMA
- Surface and subsea dispersant monitoring, and monitoring programs for regulatory compliance and NRDA may be occurring concurrently. Try to coordinate to the extent practicable.

Final Thoughts

 Industry engagement with Regional and National agencies has led to improvements in:

- Operational methods
- Monitoring technologies and protocols
- Regulatory engagement protocols
- Value of API Industry Plan
 - Aligned with NRT guidance
 - Globally transferable
 - Centered on clear, operational use and decision-making
 - Provides practical guidance on subsea monitoring
 - Adaptive, collaborative approach to improve process

Additional Information

300070

2014 INTERNATIONAL OIL SPILL CONFERENCE

A Collaborative Effort to Define the Application, Approval, and Monitoring Process for Subsea Dispersant Use

Available at:

http://ioscproceedings.org/doi/pdf/10.7901/2169-3358-2014.1.238